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Research

Cardiovascular hospital admissions and 
 mortality have been associated with ambient 
mass concentrations of fine particulate mat
ter (PM) air pollution ≤ 2.5 µm in aerody
namic diameter (PM2.5) (Pope and Dockery 
2006). Questions remain regarding the under
lying causal chemical components and sources 
responsible for these associations. A recent 
timeseries study of 106 U.S. counties showed 
stronger associations of cardiovascular hospital 
admissions with countywide averages of PM2.5 
when there were higher fractions of elemental 
carbon (EC), nickel (Ni), and vanadium (V), 
suggesting that important sources included 
fossil fuel combustion, biomass burning, and 
oil combustion (Bell et al. 2009).

Unlike PM2.5, ultrafine particles (UFPs; 
generally defined as < 0.1 µm in diameter) 
are not regulated by the U.S. Environmental 
Protection Agency (EPA), yet this is the 
size fraction that may have the highest toxic 
potential because it has magnitudes greater 
number concentrations and surface area than 
the larger particles that dominate PM2.5 mass 
(Oberdörster et al. 2005). On that large 
surface area, UFPs carry and deliver redox 
active organic chemicals, including polycyclic 

aromatic hydrocarbons (PAHs), to the respira
tory tract in disproportionately higher concen
trations than do larger particles (Ntziachristos 
et al. 2007), possibly leading to a cascade of 
effects related to oxidative stress and inflam
mation in the lungs and at extrapulmonary 
sites (Delfino et al. 2005). These and other 
effects could underlie associations of morbid
ity and mortality with air pollutants.

Except for some studies with personal or 
microenvironmental air pollution data (Chan 
et al. 2004; Delfino et al. 2008, 2009; Folino 
et al. 2009; Vinzents et al. 2005), regional 
ambient air monitoring has been the primary 
data source used in epidemiologic research on 
the importance of UFP exposure to cardio
vascular outcomes and circulating biomarkers 
in individuallevel studies (de Hartog et al. 
2003; Henneberger et al. 2005; IbaldMulli 
et al. 2004; Lanki et al. 2008; Pekkanen et al. 
2002; Rückerl et al. 2006, 2007; Timonen 
et al. 2006). These studies of ambient air were 
all conducted in Europe, and UFPs were 
measured as particle number concentrations 
at central regional sites. Exposure error from 
the use of ambient data is likely, because air 
moni tors may be far from subject locations 

and subjects may be exposed to pollutants 
from local sources, including traffic. UFPs have 
much higher spatial variability than does PM2.5 
(Sioutas et al. 2005), so exposure error is likely. 
In addition, UFP mass and particle number do 
not specifically indicate which particle com
ponents or sources are important, although 
generally in urban areas UFP compositions are 
dominated by organic chemicals and EC and 
originate from combustion sources.

We conducted a panel cohort study of 
elderly subjects with a history of coronary 
artery disease living in the Los Angeles Basin. 
This is considered a population that may 
have among the greatest susceptibility to the 
adverse effects of air pollution (von Klot et al. 
2005). We made repeated measurements of 
blood biomarkers and air pollutant exposures. 
To assess the potential importance of UFPs 
to cardiovascular health, we measured quasi
ultrafine particle mass < 0.25 µm in diameter 
(PM0.25). To address the issue of exposure 
error, we monitored PM0.25 at the retire
ment communities of subjects. We previously 
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Background: Evidence is needed regarding the air pollutant components and their sources 
 responsible for associations between particle mass concentrations and human cardiovascular out-
comes. We previously found associations between circulating biomarkers of inflammation and mass 
concentrations of quasi-ultrafine particles ≤ 0.25 µm in aerodynamic diameter (PM0.25) in a panel 
cohort study of 60 elderly subjects with coronary artery disease living in the Los Angeles Basin.

oBjectives: We reassessed biomarker associations with PM0.25 using new particle composition data.

Methods: Weekly biomarkers of inflammation were plasma interleukin-6 (IL-6) and soluble tumor 
necrosis factor-α receptor II (sTNF-RII) (n = 578). Exposures included indoor and outdoor com-
munity organic PM0.25 constituents [polycyclic aromatic hydrocarbons (PAHs), hopanes, n-alkanes, 
organic acids, water-soluble organic carbon, and transition metals]. We analyzed the relation 
between biomarkers and exposures with mixed-effects models adjusted for potential confounders.

results: Indoor and outdoor PAHs (low-, medium-, and high-molecular-weight PAHs), followed 
by hopanes (vehicle emissions tracer), were positively associated with biomarkers, but other organic 
components and transition metals were not. sTNF-RII increased by 135 pg/mL [95% confidence 
interval (CI), 45–225 pg/mL], and IL-6 increased by 0.27 pg/mL (95% CI, 0.10–0.44 pg/mL) per 
interquartile range increase of 0.56 ng/m3 outdoor total PAHs. Two-pollutant models of PM0.25 
with PAHs showed that nominal associations of IL-6 and sTNF-RII with PM0.25 mass were com-
pletely confounded by PAHs. Vehicular emission sources estimated from chemical mass balance 
models were strongly correlated with PAHs (R = 0.71).

conclusions: Traffic emission sources of organic chemicals represented by PAHs are associated 
with increased systemic inflammation and explain associations with quasi-ultrafine particle mass.
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reported positive associations of blood bio
markers of inflammation with PM0.25 but 
not with larger accumulationmode particles 
0.25–2.5 µm in diameter (PM0.25–2.5) (Delfino 
et al. 2009). However, particle mass alone does 
not provide sufficient information about com
position or sources. We also previously found 
positive associations between the biomarkers 
and PM2.5 EC (Delfino et al. 2009). Based 
on these findings, we hypothesized that traf
fic emission sources of organic chemicals in 
PM0.25 would be positively associated with 
systemic inflammation. In the present analysis, 
we aimed to better delineate which underlying 
PM components may be responsible for the 
associations we observed for EC and PM0.25 
mass using new data on chemical species in 
the archived PM0.25 filter samples.

Materials and Methods
Population and design. This was a longitudinal 
study of repeated measures where each subject 
acted as his or her own control over time. This 
limits the impact of confounding by between
subject characteristics. We recruited subjects 
from four retirement communities. Subjects 
were eligible for participation if they had a con
firmed coronary artery disease history and were 
≥ 65 years of age, nonsmokers, and unexposed 
to environmental tobacco smoke. Of 105 vol
unteers, 21 were not eligible, 19 dropped out, 
2 had too few blood draws or valid biomarker 
data (> 5 of 12 weeks), and 3 had insufficient 
biomarker data due to exclusions for frequent 
infections, leaving 60 subjects. We excluded 
biomarker measurements during weeks with 
acute infectious illnesses given their wellknown 
impact on measured biomarkers. Table 1 lists 
subject characteristics. 

Two retirement communities were stud
ied in 2005–2006 and two in 2006–2007. 
Subjects were followed for a total of 12 weeks 
with weekly blood draws for circulating bio
markers of inflammation in plasma. Each 
subject contributed 5–12 weekly blood draws 
(n = 578 total samples).

Each community was studied in two 
6week seasonal phases, a warmer period 
charac terized by higher photochemistry fol
lowed by a cooler period characterized by 
higher air stagnation and lower mixing 
heights. This seasonal approach was intended 
to increase the variability in pollutant char
acteristics, with higher secondary organic 
aerosols (SOAs) in the warmer phase and 
higher primary organic aerosols (POAs) in the 
cooler phase when trafficrelated air pollutants 
increase at ground level. POAs are formed 
during or shortly after the combustion of fossil 
fuels. SOAs are largely photochemically pro
duced from gastoparticle conversion when 
volatile reactive organic gases from anthropo
genic and biogenic sources, and anthropogenic 
semivolatile organic compounds (SVOCs), 

are oxidized to form lowvolatility products 
that condense to produce SOAs. There are 
few data on the importance of variations in 
this multipollutant characteristic of PM to 
human health outcomes. In the present study, 
POAs are represented by PAHs and hopanes, 
whereas SOAs are represented by watersoluble 
organic carbon (WSOC) and organic acids. 
Most PAHs are considered to be components 
of POAs. Hopanes are found in the lubricant 
oils of diesel and gasoline vehicles and are thus 
tracers of primary vehicular aerosols in the Los 
Angeles Basin (Schauer et al. 1996, 2000). 
WSOC (Snyder et al. 2009) and organic acids 
(Robinson et al. 2006) are tracers of SOAs, 
although a fraction of WSOC comes from 
biomass burning (Docherty et al. 2008).

The research protocol was approved by the 
Institutional Review Board of the University of 
California–Irvine, and we obtained informed 
written consent from subjects.

Biomarkers. We focused on an informative 
set of biomarkers of inflammation from the 
previous analysis of peripheral blood biomark
ers and PM0.25 mass (Delfino et al. 2009). 
We drew blood samples in ethylenediamine
tetra acetic acid tubes on Friday afternoons 
and processed them and froze the plasma on 
site within 30 min. Samples were stored at 
–80°C until assayed. Plasma biomarkers were 
thawed and assayed using 96well immuno
assay kits for the proinflammatory cytokine 
interleukin6 (IL6) and the cytokine receptor– 
soluble tumor necrosis factorα (TNFα) 
receptor II (sTNFRII; Quantikine HS, R&D 
Systems, Minneapolis, MN). sTNFRII has 
a longer halflife than TNFα (Aderka 1996) 
and may thus better reflect sustained or lagged 
effects. Thawed erythrocyte lysates were assayed 
spectrophotometrically for activities of the 
antioxidant enzymes copper/zinc superoxide 
dismutase (Cu,ZnSOD) and glutathione per
oxidase1 (GPx1) (Cayman Chemical, Ann 
Arbor, MI, USA). Cu,ZnSOD and GPx1 
values were normalized to units per gram of 
hemoglobin. These and related biomarkers 
are predictive of cardiovascular disease risk 
(FloresMateo et al. 2009; Kritchevsky et al. 
2005; Pai et al. 2004).

Exposures. The methods used to measure 
components and their relevance to sources 
of PM0.25 are described in detail in the 
Supplemental Material [Chemical Measurement 
Methods (doi:10.1289/ehp.0901407)] and by 
Arhami et al. (2010). There we also discuss in 
detail differences by season and community 
and describe the relation between indoor and 
outdoor measurements.

Air sampling occurred in the immediate 
outdoor environment of each retirement com
munity and at an indoor site located in the 
common areas of the main community build
ings. The indoor data are thus representative to 
some degree of the same indoor environment 

of each subject. Our main interest here is in 
the effects of outdoorsource PM components.

More than 5 days before each blood draw, 
we collected indoor and outdoor sizesegre
gated particle samples using Sioutas Personal 
Cascade Impactors (SKC Inc., Eighty Four, 
PA, USA) with Zefluor filters (3µm pore 
size; Pall Life Sciences, Ann Arbor, MI, USA). 
We evaluated components only in the qua
siultrafine fraction (PM0.25). Mass concen
trations were determined gravimetrically by 
weighing the impactor filters and substrates 
with a microbalance (uncertainty, ± 2 µg; 
MettlerToledo, Columbus, OH, USA) in a 
temperaturecontrolled and relative humidity–
controlled room.

The five weekly PM0.25 filters were com
posited for chemical analyses. These com
posites were cut into three sections (one 
halfsection and two quartersections). We 
analyzed the composited half section for 92 
different organic compounds using gas chro
matography/mass spectrometry (GC/MS) 
(Stone et al. 2008). For the present analy
sis, compounds are grouped by their struc
tures, which is the primary control of their 
chemical interactions. Selected representative 
organic components were grouped as PAHs, 
organic (nalkanoic) acids, nalkanes, and 
hopanes [see Supplemental Material, Table 1 
(doi:10.1289/ehp.0901407)]. PAHs were fur
ther subdivided into low (two to threering), 
medium (fourring), and high (fivering 
or larger) molecularweight PAHs (LMW, 
MMW, and HMW, respectively), which is 
loosely connected to volatility and solubility.

Table 1. Subjects and biomarker outcomes.

Variable Value
Age (years) 84.1 ± 5.60
Sex

Male 34 (56.7)
Female 26 (43.3)

Cardiovascular history
Confirmation of coronary artery diseasea

Myocardial infarction 27 (45.0)
Coronary artery bypass graft or 

angioplasty
20 (33.3)

Positive angiogram or stress test 10 (16.7)
Clinical diagnosisb 3 (5.0)

Congestive heart failure 13 (21.7)
Hypertension (by history) 42 (70.0)
Hypercholesterolemia (by history) 43 (71.7)

Medications
Angiotensin-converting enzyme 

inhibitors and angiotensin II receptor 
antagonists

24 (40.0)

3-Hydroxy-3-methylglutaryl-coenzyme 
A reductase inhibitors (statins)

31 (51.7)

IL-6 (pg/mL) 2.42 ± 1.85
sTNF-RII (pg/mL) 3,610 ± 1,489

sTNF-RII, soluble tumor necrosis factor-α receptor II. 
Values are mean ± SD or n (%). 
aEach category is hierarchical and excludes being in the 
above diagnostic category. bIncludes subjects with angi-
nal symptoms relieved with nitrates plus echocardiogram 
and electrocardiographic evidence of past infarct.
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The first composited quartersection was 
digested with concentrated acid using micro
wave digestion followed by analysis to deter
mine 52 trace elements using highresolution 
inductively coupled plasma mass spectrometry 
(Finnigan Element 2; Thermo Fisher Scientific, 
Waltham, MA, USA) (Herner et al. 2006). 
We focused our analyses of exposure–response 
relationships on key transition metals that can 
generate reactive oxygen species by Fenton
type reactions: vanadium (V), chromium (Cr), 
iron (Fe), nickel (Ni), copper (Cu), manganese 
(Mn), lead (Pb), and zinc (Zn).

The second composited quarter was ana
lyzed for WSOC using a General Electric 
Sievers Total Organic Carbon Analyzer (GE 
Analytical Instruments, Boulder, CO, USA).

The remaining composited half was 
analyzed for organic tracer compounds 
by GC/MS along with field blanks, labora
tory blanks, spiked samples, and standard 
reference material (Urban Dust Standard 
Resource Material 1649a; National Institute 
of Standards and Technology, Gaithersburg, 
MD, USA). Spike recovery after correction for 
internal standard recoveries was in the range of 
96–110% for PAHs, 99–104% for hopanes, 
and 68–136% for nalkanes. Blank concen
trations of MMW PAHs, HMW PAHs, and 
hopanes were below analytical detection lim
its (~ 10 pg/m3 air). The method detection 
limits for remaining compounds were limited 
by field and laboratory blanks. Uncertainties 
for each measurement were estimated based 
on analytical uncertainties and uncertainties 
from the blank correction and were used to 
determine if each measurement was statisti
cally different from zero. The precision of the 
spike and standard reference material analyses 

was used to estimate method precision (> 20% 
for all PAHs, hopanes, and nalkanes).

Statistical analysis. We analyzed relations 
of repeated (withinsubject) measures of bio
markers to air pollutant exposures with linear 
mixed effects models. Random effects were 
estimated at the subject level, nested within 
seasonal phase and community, to account 
for correlated withinindividual repeated 
meas ures. To focus estimates of associations 
at the subject level, we adjusted for between
 community and betweenphase exposure 
effects as proposed by Janes et al. (2008) by 
using exposures that were meancentered across 
community and phase [see Supplemental 

Material, Regression Model, Mean Centering 
Method (doi:10.1289/ehp.0901407)]. We 
decided a priori to adjust for 5day average 
temperature. Magnitudes of association from 
the mixed models are expressed at pollutant 
interquartile ranges (IQRs; 25th–75th per
centile) to allow strengths of association for 
different pollutants to be compared by limit
ing differences due to units of measurement or 
concentration range.

We evaluated the covariance structure 
using empirical variograms and found models 
were best fit as an autoregressive1 correla
tion structure. We performed residual analy
ses to examine deviations from standard linear 

Table 2. Descriptive statistics of outdoor measurements and indoor/outdoor (I/O) ratios of PM0.25 organic components and transition metals from 47 weeks of 
5-day filter composites.

Warm season Cool season
Exposure Mean ± SD IQR Min/max I/O ratio Mean ± SD IQR Min/max I/O ratio IQR overalla

Organic components
PM0.25 mass (µg/m3) 9.51 ± 3.46 7.24 4.67/14.7 0.88 8.65 ± 4.51 6.07 3.31/19.3 0.94 7.37
WSOC (µg/m3)b 0.52 ± 0.23 0.31 0.08/1.01 0.95 0.38 ± 0.23 0.39 0.06/0.94 0.94 0.37
PAHs (ng/m3)

Total 0.88 ± 0.37 0.47 0.40/1.75 0.84 1.04 ± 0.61 0.73 0.40/2.70 0.99 0.56
LMW 0.38 ± 0.15 0.20 0.19/0.74 0.78 0.33 ± 0.15 0.19 0.17/0.73 1.02 0.19
MMW 0.26 ± 0.12 0.18 0.09/0.50 0.85 0.35 ± 0.24 0.33 0.09/0.96 0.74 0.24
HMW 0.24 ± 0.11 0.18 0.11/0.50 0.97 0.37 ± 0.24 0.32 0.14/1.01 1.04 0.21

Hopanes (ng/m3) 0.27 ± 0.34 0.36 0.06/1.57 1.00 0.25 ± 0.25 0.35 0.06/0.83 0.97 0.35
n-Alkanes (ng/m3) 36.3 ± 23.5 43.2 9.9/81.2 1.39 54.8 ± 111 15.9 11.7/ 500 1.30 29.4
Organic acids (µg/m3) 0.22 ± 0.17 0.30 0.06/0.54 5.05 0.26 ± 0.22 0.26 0.07/0.96 1.24 0.29

Transition metals (ng/m3)
V 4.83 ± 2.07 2.10 1.66/11.3 0.75 2.10 ± 1.19 2.40 0.54/4.25 0.77 2.95
Cr 10.2 ± 30.2 2.21 0.00/139 0.89 0.26 ± 0.45 0.49 0.00/1.24 1.00 1.18
Mn 3.09 ± 2.88 3.10 0.00/13.8 0.57 2.02 ± 1.43 1.76 0.27/6.19 0.70 2.24
Fe 144 ± 127 167 0.00/588 0.49 92.5 ± 64.2 74.7 9.39/287 0.74 115
Ni 7.21 ± 18.0 3.51 0.00/82.8 0.83 0.20 ± 0.61 0.816 0.00/1.44 2.27 1.64
Cu 6.45 ± 4.35 5.50 0.35/16.0 0.64 4.69 ± 3.22 4.91 0.43/11.3 0.60 4.69
Zn 6.88 ± 4.16 6.39 0.00/15.8 0.78 6.08 ± 3.51 4.81 1.75/13.0 0.93 5.77

Abbreviations: max, maximum; Min, minimum. 
aOverall IQR used in regression models to estimate expected change in the biomarker from exposure to the air pollutant. bWSOC (µg C/m3) was multiplied by 1.8 to yield mass of organic 
components (µg/m3) according to Turpin and Lim (2001).

Table 3. Exposure correlation matrix for outdoor PM0.25 mass and organic components.

PAH
Pollutant WSOC Total LMW MMW HMW Hopanes n-Alkanes Organic acids
PM0.25 mass 0.25 0.45 0.44 0.38 0.39 0.31 0.17 –0.18
WSOC 1.00 0.39 0.41 0.29 0.40 0.31 0.15 0.09
PAHs

Total 1.00 0.89 0.93 0.81 0.54 0.15 –0.19
LMW 1.00 0.79 0.66 0.63 0.24 –0.24
MMW 1.00 0.67 0.51 0.12 –0.33
HMW 1.00 0.41 0.20 –0.03

Hopanes 1.00 0.08 –0.26
n-Alkanes 1.00 –0.06

All exposures are mean centered by study community and seasonal phase, and results are Spearman rank correlations.

Table 4. Exposure correlation matrix for outdoor PAH and source apportioned mass.

PAH
Vehicular 
emissions

Biomass 
burning

Ship 
emissions SOAs RS dust

NSS 
sulfate Sea salt Unknown

Total 0.71 0.22 0.10 0.19 0.24 0.06 0.33 0.33
LMW 0.70 0.14 0.17 0.27 0.39 0.10 0.34 0.31
MMW 0.66 0.36 –0.01 0.04 0.19 –0.06 0.27 0.30
HMW 0.66 0.08 0.09 0.27 0.13 0.13 0.19 0.14

Abbreviations: RS, resuspended; NSS, non-sea salt. All exposures are mean centered by study community and seasonal 
phase, and results are Spearman rank correlations. Source apportioned mass data come from Arhami et al. (2010). 



Biomarkers and particle components

Environmental Health Perspectives • volume 118 | number 6 | June 2010 759

mixed model assumptions and the presence 
of influential observations. We found four 
influential high outliers for IL6 > 10 pg/mL 
that were reset to 10 pg/mL (upper limit of its 
standard curve) to obtain more representative 
estimates of association. In a model for 5day 
average PM0.25, including the outliers resulted 
in an association of 0.41 pg/mL [95% con
fidence interval (CI), 0.00–0.82] per inter
quartile change in PM0.25 of 7.37 µg/m3, 
whereas resetting them to 10 pg/mL resulted 
in an association of 0.26 pg/mL (95% CI, 
–0.06 to 0.57). It is important that in the 
previous analysis of PM0.25 mass (Delfino 
et al. 2009), the associations with 1day and 
3day average PM0.25 were stronger and had 
narrower 95% CIs than did the 5day average 
for both IL6 and sTNFRII.

In exploratory analyses, we retested 
models for erythrocyte antioxidant enzymes 
(Cu,ZnSOD and GPx1) from our previ
ous publication (Delfino et al. 2009). 
Random slopes and individual autoregres
sive models showed small, highly influential 
subject clusters (seven subjects) with posi
tive associations between air pollutants and 
antioxidant enzymes, whereas most of the 

remaining 53 subjects showed inverse associa
tions. Details of these clusters and their inter
pretation are presented elsewhere (Delfino 
et al. 2009). We present these datadriven 
results with the new air pollutant exposure 
data primarily in the Supplemental Material, 
Table 3 (doi:10.1289/ehp.0901407).

Results
Table 2 provides descriptive statistics for the 
measured exposures. Seasonal differences were 
greatest for MMW PAHs, HMW PAHs, and 
nalkanes, which were higher in the cool sea
son, and for WSOC, which was higher in the 
warm season, as expected because of photo
chemistry. Indoor/outdoor ratios were close 
to 1.0 for PAHs and hopanes, and indoor–
outdoor correlations were strong (median 
R was 0.60 for PAH species and 0.74 for 
hopane species) (Arhami et al. 2010). This 
suggests high penetration of these outdoor 
PM0.25 components into indoor environ
ments and that measured indoor components 
were largely of outdoor origin. On the other 
hand, indoor/outdoor ratios were high for 
nalkanes and nalkanoic acids, with gener
ally low indoor/outdoor correlation coeffi
cients (Arhami et al. 2010). This suggests that 
indoor sources influenced the indoor levels of 
nalkanes and nalkanoic acids.

Table 3 shows a correlation matrix for 
measured outdoor organic components. We 
found moderate to strong correlations between 
PM0.25 mass, PAHs, and hopanes. We also 
found small negative correlations of these spe
cies with organic acids and small positive cor
relations with WSOC, suggesting that POA 
and SOA concentrations are relatively inde
pendent of each other at the study sites.

To further improve our understanding of 
the clearly positive associations of biomarkers 
with summed PAH compounds presented 

below, we used the chemical mass balance 
model (CMB) source apportionment esti
mates from Arhami et al. (2010) to evalu
ate the possible sources of PAHs. We briefly 
summarize methods and source apportion
ment results in the Supplemental Material, 
Chemical mass balance (CMB) model 
(doi:10.1289/ehp.0901407). Table 4 shows a 
correlation matrix for the relation of PAHs to 
the CMBestimated sources. Strong correla
tions are seen for total PAHs with vehicular 
emission sources, whereas the apportioned 
mass from other sources shows weak to null 
correlations.

In the mixedmodel regression analy
ses, we found positive associations of cir
culating biomarkers of inflammation (IL6 
and sTNFRII) with organic components 
(Table 5, Figure 1). We found the strongest 
associations with biomarkers for both indoor 
and outdoor PAHs, including LMW, MMW, 
and HMW PAHs. The next strongest asso
ciations were for hopanes. Indoor but not 
outdoor hopanes were associated with IL6, 
whereas both indoor and outdoor hopanes 
were associated with sTNFRII.

Outdoor WSOC (a marker of SOAs) 
was positively associated with sTNFRII, but 
confidence limits crossed 1.0 (p < 0.14), and 
we found no other associations with SOA 
markers. The outdoor organic acids (another 
marker of SOAs) showed a pattern oppo
site to that of the POA markers, with largely 
negative regression coefficients in relation 
to biomarkers of inflammation. To assess 
whether this was due to inverse correlations 
with PAHs, we coregressed outdoor total 
PAHs with outdoor organic acids. We found 
that associations with PAHs and with organic 
acids decreased in magnitude to small degrees 
when coregressed, suggesting that the negative 
regression coefficients for organic acids with 

Table 5. Associations of biomarkers of systemic 
effect with indoor and outdoor 5-day average 
PM0.25 mass and organic components [regression 
coefficient (95% CI)].
Air  
pollutant

IL-6 
(pg/mL)

sTNF-RII 
(pg/mL)

PM0.25 mass
Indoor 0.05 (–0.12 to 0.22) 18 (–61 to 97)
Outdoor 0.26 (–0.06 to 0.57) 125 (–40 to 289)

WSOC
Indoor –0.11 (–0.30 to 0.08) 15 (–77 to 108)
Outdoor –0.08 (–0.27 to 0.10) 63 (–19 to 145)

PAHs
Total

Indoor 0.25 (0.07 to 0.43)** 119 (16 to 223)*
Outdoor 0.27 (0.10 to 0.44)** 135 (45 to 225)**

LMW
Indoor 0.30 (0.10 to 0.50)** 115 (–2 to 233)
Outdoor 0.22 (0.05 to 0.39)* 109 (19 to 200)*

MMW
Indoor 0.28 (0.07 to 0.48)** 138 (22 to 254)*
Outdoor 0.30 (0.12 to 0.48)** 143 (47 to 238)**

HMW
Indoor 0.18 (0.02 to 0.35)* 91 (1 to 181)*
Outdoor 0.26 (0.07 to 0.44)** 137 (39 to 234)**

Hopanes
Indoor 0.22 (0.04 to 0.39)* 107 (10 to 204)*
Outdoor 0.06 (–0.08 to 0.20) 89 (26 to 151)**
n-Alkanes

Indoor 0.01 (–0.03 to 0.06) –6 (–27 to 16)
Outdoor 0.009 (–0.03 to 0.05) 14 (–6 to 34)

Organic acids
Indoor –0.05 (–0.22 to 0.12) –36 (–109 to 37)
Outdoor –0.22 (–0.39 to 

–0.06)**
–82 (–164 to 1)

Regression coefficients and 95% CIs are for the expected 
change in the biomarker among 60 subjects associated 
with an IQR change in the air pollutant (see Table 2), 
adjusted for temperature.
*p < 0.05, **p < 0.01.

Figure 1. Associations of biomarkers with 5-day average outdoor and indoor community PM0.25 mass, and 
markers of POAs and SOAs. (A) IL-6. (B) sTNF-RII. Expected change in the biomarker (adjusted coefficient 
and 95% CI) corresponds to an IQR increase in the air pollutant concentration (see Table 2), adjusted for 
temperature.
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biomarkers of inflammation may be attrib
uted to other unmeasured factors or chance.

We then tested twopollutant regression 
models that included both outdoor PM0.25 
mass and total PAHs to assess whether PAHs 
explained the nominal association with mass. 
We found that IL6 and sTNFRII associa
tions with mass were completely confounded 
by PAHs in that the regression coefficient 
for mass decreased to just below zero and the 
regression coefficient for PAHs was nearly 
unchanged (Figure 2A,B). We found a sim
ilar effect for hopanes, which confounded 
the nominal association of PM0.25 mass with 
sTNFRII (Figure 2C). The variance inflation 
factor was < 3.5 for exposures, thus showing 
little evidence of multicollinearity.

Transition metals were not associated with 
the biomarkers [see Supplemental Material, 
Table 2 (doi:10.1289/ehp.0901407)].

As previously shown (Delfino et al. 2009), 
the analysis of the relation of erythrocyte anti
oxidant enzymes (Cu,ZnSOD and GPx1) 
to air pollutants among all 60 subjects showed 
regression coefficients were largely negative, 
suggesting inverse associations, but most upper 
confidence limits crossed 1.0 (see Supplemental 
Material, Table 3 (doi:10.1289/ehp.0901407)]. 
The exploratory analysis showed that among 
seven subjects previously identified as a “posi
tive responder group” (Delfino et al. 2009), we 
found largely positive associations of Cu,Zn
SOD and GPx1 with air pollutants, and 
lower confidence limits were > 1.0 for out
door PM0.25 mass and several other exposures. 
In the 53 subjects previously identified as a 
“negative responder group,” we found inverse 
associations of Cu,ZnSOD and GPx1 with 
indoor and outdoor total, LMW, MMW, and 
HMW PAHs and with hopanes (all markers 
of exposures linked to primary combustion). 
Indoor WSOC was inversely (p < 0.07) associ
ated with Cu,ZnSOD, but we found no other 
associations with SOA markers in the negative 

responder group. Confidence limits were wider 
for GPx1 than for Cu,ZnSOD.

Discussion
To our knowledge, this is the first report from 
a panel cohort study to show associations of 
circulating biomarkers of response in human 
subjects to specific PM organic compound 
classes. The measured chemicals serve as indi
cators and tracers for air pollutant sources and 
for classes of chemicals with the potential for 
redox activity in the body. Our prior work has 
focused on carbonaceous aerosols that pro
vided some differentiation between POAs and 
SOAs by showing associations of biomarkers 
of inflammation with primary PM2.5 organic 
carbon (OC) but not secondary PM2.5 OC (a 
marker of SOAs) (Delfino et al. 2008, 2009). 
In the present analysis, we found the stron
gest biomarker associations with air pollutant 
variables for all molecular weight classes of 
PAHs and specific source markers of vehicular 
emissions (hopanes) measured in PM0.25 with 
GC/MS. Furthermore, twopollutant mod
els of the relation between the biomarkers of 
systemic inflammation and both total PAHs 
and PM0.25 mass showed that mass associa
tions were completely explained by PAHs. 
Given the results of the chemical mass balance 
analysis [see Supplemental Material, Chemical 
mass balance (CMB) model (doi:10.1289/
ehp.0901407) and Arhami et al. 2010], we 
infer that the confounding of nominal asso
ciations between biomarkers and PM0.25 
mass by PAHs was through a common set of 
sources. PAHs likely serve here as a surrogate 
for redoxactive PM chemical components 
as evidenced in experimental models (Riedl 
and DiazSanchez 2005). For example, PAHs 
from diesel exhaust particles and oxidized 
derivatives of PAHs such as quinones lead to 
the generation of reactive oxygen species and 
subsequent oxidant injury and inflammatory 
responses, including the expression of nuclear 

transcription factorκB (NFκB) (Riedl and 
DiazSanchez 2005). NFκB increases the tran
scription of cytokines and acutephase proteins 
that are predictive of coronary artery disease 
risk (Pai et al. 2004). PAHs can induce oxida
tive stress responses after biotransformation to 
quinones by cytochrome P450 1A1 (Bonvallot 
et al. 2001), perhaps after delivery from the 
lungs to systemic targets.

In the Los Angeles Basin, most outdoor 
PAHs in PM0.25 are expected to be from 
mobile sources (Schauer et al. 1996), and the 
CMB exposure correlations are consistent with 
this expectation. PAHs were also correlated 
with source markers of vehicular emissions 
(hopanes). Hopanes are the most unambiguous 
source marker of traffic emissions. However, 
the moderate but not strong correlation 
between hopanes and PAHs suggests that the 
measured PAHs include a different subset of 
mobile sources than that of hopanes. This may 
in part be due to the variability in PAHs rela
tive to hopanes by combustionrelated prob
lems in the vehicle fleet (Lough et al. 2007).

Overall, the associations of biomarkers with 
PAHs and hopanes suggest that our previous 
findings of positive associations of biomarkers 
with PM2.5, EC, and primary OC (Delfino 
et al. 2009) were due to PM of mobilesource 
origin. PAHs are found in greater concentra
tions in the quasiUFP range compared with 
larger particles (Ntziachristos et al. 2007), and 
this has been hypothesized to explain enhanced 
prooxidative and proinflammatory effects of 
urban UFPs in the lungs and peripheral target 
organs of rodents (Araujo et al. 2008). The 
increased biological potency of UFPs may be 
related to the content of organic chemicals that 
have the capacity to reduce oxygen, such as 
quinones and nitroPAHs, for which PAHs 
may act, in part, as a surrogate (Ntziachristos 
et al. 2007) or as a source after biotransfor
mation. From the present results we infer 
that, although PAHs may have an effect by 

Figure 2. Associations of circulating biomarkers of inflammation with outdoor PM0.25 mass coregressed with outdoor total PAHs and hopanes in PM0.25. (A) IL-6, 
PAHs, and PM0.25. (B) sTNF-RII, PAHs, and PM0.25. (C) sTNF-RII, hopanes, and PM0.25. Expected change in the biomarker (adjusted coefficient and 95% CI) corre-
sponds to an IQR increase in the air pollutant concentration (see Table 2), adjusted for temperature.
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themselves, they are also likely surrogates for 
other causal species we did not measure that 
are emitted from the same (traffic) sources.

We found little evidence that tracer 
variables for SOAs and related components 
(WSOC and organic acids) were associated 
with the circulating biomarkers in the expected 
direction. We have no explanation for the 
negative regression coefficients for organic 
acids with biomarkers. Although most of the 
SOAs are expected to be in larger PM > 0.25 
µm, the present results are consistent with our 
finding of few biomarker associations with 
PM2.5 secondary OC or accumulation mode 
particle mass (PM0.25–2.5) in an earlier pub
lication (Delfino et al. 2009). In that study, 
regression coefficients were also negative for 
IL6 in some models with PM0.25–2.5 and with 
secondary OC. We speculate that components 
in outdoor SOAs estimated by our methods 
(e.g., organic acids), are mostly water solu
ble and highly oxygenated, and dissolve after 
deposition on the airway epithelium and then 
quickly react with extracellular macromole
cules and cell membrane constituents. Thus, 
these PM components may not directly inter
act with the vasculature, although it has been 
hypothesized that inhaled particles lead to air
way inflammatory responses and subsequent 
release of activated leukocytes and cytokines 
into the circulation (Mills et al. 2009).

An important limitation of our characteriza
tion of SOAs is that WSOCs and organic acids 
do not completely characterize the SOA fraction 
of PM, part of which may come from the pho
tochemical oxidation of lowvolatility vapors 
to form hydrophilic organic components, but 
whose chemical identity is largely unknown. 
These precursor vapors include SVOCs that are 
largely part of POAs. SVOCs evaporate from 
the particle phase during the process of atmo
spheric dilution and subsequently react with 
oxidant gases to form a significant fraction of 
SOAs (Robinson et al. 2007).

Lipidsoluble components of PM more 
closely associated with primary emissions, 
including PAHs, may become bioavailable 
after deposition followed by distribution of 
unmetabolized chemicals to the circulation 
and to extrapulmonary target sites (Gerde 
et al. 2001). It is also possible that a small 
fraction of toxic components is carried via 
various translocation mechanisms into the 
circulation on UFPs (Mühlfeld et al. 2008). 
However, translocation may account for a 
potentially insignificant amount of the impact 
of UFPs compared with the high retention 
of UFPs in the lungs (Möller et al. 2008), 
which may lead to sustained effects through 
the gradual transfer of redoxactive compo
nents to the circulation over many days.

Although transition metals are known 
to be redox active, we found no consistent 
associations with the biomarkers measured, 

possibly because of low concentrations of 
these trace elements in the study areas.

Finding positive associations of biomark
ers with both indoor and outdoor PAHs and 
hopanes along with the indoor/outdoor ratios 
of these organic components being close to 
1.0 suggests that, even though people spend 
most of their time indoors, indoor air qual
ity and PM exposures are strongly influenced 
by PM of outdoor origin. These findings are 
consistent with our previous analysis for the 
first half of this panel showing that CMB
estimated indoor PM of outdoor origin (par
ticle number, EC, and primary OC) were 
associated with the biomarkers to a similar 
degree as outdoor PM (Delfino et al. 2008).

Briefly, the exploratory (datadriven) find
ings for GPx1 and especially Cu,ZnSOD 
are consistent with our previous findings for 
primary OC and EC (Delfino et al. 2009) 
and suggest antioxidant enzyme inactivation 
within erythrocytes by trafficrelated pollut
ant components, including PAHs, among 
a subgroup of people. This inactivation is 
anticipated to increase oxidative stress and 
thus inflammation. This is potentially impor
tant because these enzymes likely represent 
important intermediate end points that have 
been linked to the risk of developing coronary 
artery disease in prospective cohort and other 
studies (FloresMateo et al. 2009). Given that 
these findings were far less clear when includ
ing the entire 60subject panel (because a 
small subgroup of seven subjects had positive 
associations), these results should be viewed 
as hypothesis generating and retested in 
other populations. See Delfino et al. (2009) 
for further details and discussion concerning 
potential mechanisms of antioxidant enzyme 
inactivation versus upregulation that may 
explain group differences.

Strengths of the present study lie in expo
sure measurements in each subject’s com
munity microenvironment and in repeated 
biological marker assessments in a wellcharac
terized patient sample. Limitations include the 
potential for unmeasured temporal confound
ing. However, we performed a priori adjust
ment for one of the largest sources of variability 
in inflammatory mediators that have been doc
umented in the literature (infections), and we 
also accounted for temperature and for com
munity and seasonal variability in exposures. 
We also acknowledge that the present study 
does perform multiple comparisons, although 
we did narrow the number of hypotheses being 
tested based on prior evidence of associations 
from the work of others and ourselves.

The results of the present study suggest 
that tracer components of mobile source emis
sions in PM0.25 are associated with increased 
systemic inflammation in a potentially sus
ceptible population of elderly individuals. 
The measured biomarkers likely represent 

important intermediate end points (systemic 
inflammation) that have been linked to the 
risk of cardiovascular diseases in prospective 
cohort and other studies (Kritchevsky et al. 
2005; Pai et al. 2004). The positive relation 
between air pollution and cytokine bio
markers may also be indicative of acute risk 
of adverse cardiovascular outcomes related 
to vascular dysfunction and atherothrombo
sis (Mills et al. 2009). We recently reported 
coherent associations between hourly ambula
tory systolic and diastolic blood pressure and 
hourly air pollutant exposures in the present 
panel cohort, including stronger associations 
with primary PM2.5 OC compared with sec
ondary PM2.5 OC (Delfino et al. 2010).

We conclude that U.S. EPA–regulated 
ambient PM2.5 mass measurements may not 
adequately represent risk to human health 
because they are uncharacterized by composi
tion, source, or PM size distribution and are not 
necessarily representative of personal or local 
exposure. Confirmatory data are needed in other 
populations using measurements of organic 
components across several PM size fractions.
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